Introducció Selecció d'un camp de la base de dades associada
Selecció d'un registre quan hi ha registre múltiple per a un objecte gràfic Selecció d'objectes gràfics per atributs de la base de dades, o de cel·les de ràsters per a consulta sobre els seus valors
Selecció d'una coordenada Z per cada vèrtex en fitxer vectorial 3D amb múltiples alcades per vèrtex Format intern de la data i l'hora
Algorismes disponibles per a l'estructuració topològica (/ALGORISME) Desempat per als quantils (modificador opcional /MEDIANA_EMPAT=)

Introducció

En aquest document es recullen aspectes de sintaxi que afecten a algunes Aplicacions de Suport al MiraMon.


Selecció d'un camp de la base de dades associada


Selecció d'un registre quan hi ha registre múltiple per a un objecte gràfic


Selecció d'objectes gràfics per atributs de la base de dades, o de cel·les de ràsters per consulta sobre els seus valors


Selecció d'una coordenada Z per cada vèrtex en fitxer vectorial 3D amb múltiples alcades per vèrtex


Format intern de la data i l'hora

Per a més informació consulteu les consideracions generals sobre la data i l'hora.


Algorismes disponibles per a l'estructuració topològica (/ALGORISME)

El MiraMon permet estructurar topològicament els conjunts d'informació vectorials. Aquesta estructuració topològica implica analitzar i, conseqüentment organitzar, les entitats vectorials de manera que les seves relacions espacials estiguin explícitament descrites. Els beneficis d'aquesta estructuració topològica són múltiples: garantir la consistència espacial, evitar superposicions indesitjades (totals o parcials) d'entitats, evitar errors com ara "escletxes" entre polígons, estalviar espai d'emmagatzematge i augmentar la velocitat de transmissió de les dades, permetre anàlisis de xarxes, etc. Aquests beneficis permeten incrementar el ventall possible d'anàlisis geogràfiques (algunes de les quals no són possibles sense estructuració topològica) i efectuar-les de manera robusta i fiable.

En el cas d'elements lineals (e.g., rius), o en el cas de les vores dels elements poligonals (e.g., parcel·les cadastrals), l'anàlisi a efectuar comporta la detecció d'interseccions entre els segments que formen les línies i les vores de polígons; aquestes interseccions poden ser al llarg dels segments o per contacte dels seus extrems i generen vèrtexs especials que s'anomenen nodes (com també són nodes els vèrtexs dels segments que no intersequen amb cap altre segment). En capes amb moltes línies o polígons, aquest procediment pot requerir un temps de càlcul considerable, que pot augmentar exponencialment segons com estiguin disposades les entitats originals (grans línies que presenten moltes interseccions amb la resta, superposició explícita per parelles de segments [com passa en les capes de polígons explícits de la majoria de formats de SIG], etc). Per a realitzar aquesta detecció de manera el més eficaç possible, es pot escollir entre dos algorismes (procediments): "algorisme directe" i "algorisme d'escombratge". Aquests algorismes estan disponibles en les diferents aplicacions del MiraMon que realitzen estructuració topològica (LinArc, BufDist, CombiCap, Retalla, SHPTop, etc) i s'indiquen, en la línia de comanda, amb el modificador /ALGORISME=. A continuació es consignen els diferents algorismes disponibles.

Llavors,

Si en el moment d'estructurar una capa se sap que l'estructuració generarà nous vèrtexs (és a dir, es detectaran interseccions) és millor escollir "escombratge". En cas contrari, es pot escollir "directe". En cas de dubte, podeu indicar "automàtic", però aquest mode pot requerir més temps que el més ràpid dels dos anteriors (però menys que el més lent), ja que si quan ha fet un percentatge dels procediments detecta que el mode inicial no és òptim torna a començar amb l'altre mode.


Desempat per als quantils (modificador opcional /MEDIANA_EMPAT=)

Si una aplicació efectua el càlcul d'algun quantil (com ara la mediana, un quartil o un percentil), es pot indicar el tipus de desempat a usar per al seu càlcul quan la posició del quantil sigui entre dos valors de la sèrie. El criteri també s'aplicarà quan s'ha de calcular la mitjana de les desviacions absolutes respecte de la mediana (ja que requereix calcular la mediana). Les opcions de càlcul són:

L'opció per defecte és la 1.