Figures and Tables

Figure 1. The Miombo Landscape: (a) a plan section showing the interdigitation of woodland (stippled) and dambo grasslands (clear); (b) a crosssection profile down a catena showing variations in soil properties and vegetation structure (topographic details and data on organic carbon, cation exchange capacity (CEC) and total exchangeable bases (TEB) from Webster (1965). The rolling relief is typical of the undulating erosion of the Central African shield.

Figure 2. The distribution of miombo ecosystems as defined by this project. The total area is 2.8 million km².

Figure 3. Composite of sub-pixel high temperature sources (active fires) derived from daily NOAA-AVHRR 1-km satellite data from August through October 1992.

Figure 4. Flow chart of the proposed Palaeoecological Experiment on Miombo. The circled numbers correspond to Core Experiment 5, Activity 2, Tasks 1-4 in the text, T and P are temperature and precipitation.

Figure 5. Interactions between land surfaces and the atmosphere. Boxes denote the atmosphere and the three components of land-atmosphere interactions: biophysics, biogeochemistry, and ecosystem state. Text within boxes indicate important state variables. Arrows indicate variables exchanged between component models. Ecosystem state affects biogeochemistry and biophysics through community composition, leaf area index, canopy height, cover type, and carbon, phosphorus and nitrogen pools (modified from Bonan 1995).

Figure 6. Flow of data, experiments, modeling and analysis.

Figure 7. Proposed Schedule of Miombo Network Programmes.

Figure 4. Flow chart of the Proposed Palaeoecological Experiment on Miombo. The circled numbers correspond to Core Experiment 5, Activity 2, Tasks 1-4 in the text, T and P are temperature and precipitation.

Figure 5. Interactions between land surfaces and the atmosphere. Boxes denote the atmosphere and the three components of landatmosphere interactions: biophysics, biogeochemistry, and ecosystem state. Text within boxes indicate important state variables. Arrows indicate variables exchanged between component models. Ecosystem state affects biogeochemistry and biophysics through community composition, leaf area index, canopy height, cover type, and carbon, phosphorus and nitrogen pools (modified from Bonan, 1995).

Figure 6. Flow of Data, Experiments, Modeling and Analysis

ACTIVITY	1996	1997	1998	1999	2000	
	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	
Data Activities						
Characterization & Bioclimatology						
Land Cover Mapping & Rates of Change						
Fire Timing & Distribution						
Miombo CD-ROM						
Experiments						
Microscale Landuse Case Studies						
LU Dynamics - Causes, Descr., Conseq.						
Palaeoecology of Miombo						
Vegetation Dynamics Across Gradients						
Nutrient Limitation - N&P		\diamond				
Miombo Landscape Experiment						
Sustainable Natural Resource Managemen	t					
Modeling						
Bioclimatology						
Succession - Patch Process Modeling						
Biogeochemistry - C, N, P		\diamond				
Catchment Hydrological Modeling		\diamond				
Regional Veg-AtmosphClimate-Fire						
Integrated Biophysics & Socioeconomics						
	1					
Steering Team						
Outputs - Summaries, Reports						

LEGEND: OPlanning Meeting

Training Workshop

shop **V** Output

Figure 7. PROPOSED SCHEDULE OF MIOMBO NETWORK PROGRAMS

Table 1.

Linkages and involvement of Programme Elements/Research Programmes and Framework Activities in the Miombo Network.

MIOMBO EXPERIMENT	LUCC	GCTE	BAHC	PAGES	IGAC	GAIM	DIS	START (SAF)
1. Land Use Dynamics					x		x	х
2. Land Cover Dynamics		x			x		x	x
3. Ecosystem Dynamics & Disturbance		x	x			x		x
4. Nutrient Limitation in Miombo		x			х			х
5. Biogeography and Distribution of Miombo		x		x				x
6. Regional Primary Productivity and Carbon Balance		x	x			х		х
7. Sustainable Natural Resource Management		x						