
1

STRUCTURED VECTOR FILE FORMAT

(TOPOLOGICAL OR NOT) IN MIRAMON (POINTS,

ARCS, NODES AND POLYGONS)

Document authors: Abel Pau and Xavier Pons

Initial proposal: 18-09-2014 (04-12-2014, v. 1.1)
Last modified and version: 11-04-2024, 2.1

1. BACKGROUND, MOTIVATION AND STRUCTURE OF THIS DOCUMENT .. 2

2. DESCRIPTION OF THE MIRAMON STRUCTURED VECTOR FILE FORMAT .. 3

2.1. Structured headers common to all files ... 5
2.1.1. Header common to all structured vector files .. 5
2.1.2. Altitudes for the 3D file case. .. 9

2.2. Points file .pnt .. 12
2.3. Arcs files .arc .. 13
2.4. Nodes file .nod ... 16
2.5. Polygons file .pol .. 17
2.6. Format summary for all file types .. 22

3. SOME CONSIDERATIONS ABOUT THE FILES CONTAINING ARCS OR POLYGONS 22

4. ILLUSTRATIVE EXAMPLE OF COMPLEX POLYGONS ... 23

2

1. Background, motivation and structure of this document

As MiraMon began development, Xavier Pons and Joan Masó designed and
created formats for the software vector files, which had to be able to contain
Points, Arcs, Nodes and Polygons, and be a balance between maximizing their
coherence (reducing potential inconsistencies by using common elements
between them) but without compromising their performance (something that
would have happened in a fully normalized model of interdependencies). Their
conception, therefore, aimed for the new files to have a structure that allowed
very agile computer processing and, at the same time, to make explicit the
topological relationships between entities or geographic objects when needed.

These files have an internal computer structure that makes them suitable to
efficiently access 2D and 3D (from v. 1.1) vector information. That is why they
are also used to contain vector information without topological structure.
Therefore, it is important to understand that:

1. The MiraMon structured vector format may contain files with or
without explicit topological structure.

2. The format collects information about whether it contains vector
elements with known topological relationships, or not (commonly
known as "spaghetti" in the case of linear elements); more on this
below.

3. A MiraMon structured file may contain data imported from a file
without topology (such as a SHP or a DXF) and in this case it will be
simply a structured file, NOT a topological file.

4. A MiraMon structured file may contain data with explicit topological
structure (for example as a result of topological digitizing in MiraMon,
resulting from a topological structuring process with certain options
of applications such as LinArc, or resulting from an import of a
format without topology, such as a SHP, when during that import a
topology building process is made). In this case it is a proper
structured topological file.

In v. 2.0 of this document the v. 2.0 of the format is included, which essentially
supports 64-bit values, and no longer 32-bit, for integers that indicate positions
within the file (offsets) and for object identifiers, as well as some other
modifications. This means that from v. 2.0 both the possible files size, and the
number of elements they can contain, are virtually infinite.

This document complements the information of the MiraMon help file "MiraMon
vector formats description", where the description of the structured formats is
given from the user's point of view. Reading that help file is recommended to be
familiar with MiraMon files. It is accessible directly through the MiraMon online
help link: https://www.miramon.cat/help/eng/mm32/ap2.htm

Section 2 of this document describes the common part (topological header) in all
the files and the specific part for each type of file. Section 3 considers factors
relating to arcs and polygons, and in section 4 a complex polygon case is
illustrated.

https://www.miramon.cat/help/eng/mm32/ap2.htm

3

It is important to understand that, unlike other models of topological structure, in
which the arcs can only be used to cycle (build) a single layer of polygons, in the
MiraMon model a single layer of arcs can be used to cycle several layers of
polygons (a layer of administrative limits can server to cycle a layer of
municipalities, a layer of counties, etc); of course, in each layer of polygons, only
those arcs needed to cycle the corresponding polygons are used. This causes
that the classical topological information about which polygon is on the right or on
the left of each arc is not in the layer of arcs, but in the polygon layer itself.

2. Description of the MiraMon structured vector file format

A MiraMon vector layer, whether it contains Points, Arcs, Nodes or Polygons,
consists of several files. The main files are 3:

 A file that contains the graphic information (geometric and, if it is the
case, topological), with coordinates, space dependencies, etc, and that
has .pnt, .arc, .nod and .pol extension. This document explains the format
of the files corresponding to the part of the graphic elements.

 A main table of user attributes, which is in DBF format, or in extended
DBF format if more than 254 fields are required, if fields of more than 254
characters are needed, if field names up to 128 characters are needed, if
the number of records is greater than 4200 million, etc. The DBF format is
a well-known and documented format, while the documentation of the
extended DBF format can also be found in the technical document
"Extended DBF" format specification created by Xavier Pons and Abel Pau.
The .dbf extension is preceded by the letters 'T', 'A', 'N' or 'P',
depending on whether it is a DBF relative to a points, arcs, nodes or
polygons layer. The rest of the name is the same as that of the graphic
file and is stored in the same directory.

 A text file, in INI Windows format, described in the help section of
MiraMon, contains the layer metadata and also describes both the
default (optional) symbolization and the possible relationships of the
main table with other tables (be DBF or others, such as tables or queries
in Access files, large database managers such as SQL Server, Oracle,
etc). The extension for this file is .rel, and is preceded by the letters
'T', 'A', 'N' or 'P', in relation with a REL relative to a points, arcs, nodes
or polygons layer. The rest of the name is the same as that of the graphic
file and is stored in the same directory.

Internally the n points, arcs, nodes and polygons are indexed from 0 (the first
element is 0, the second one is 1, etc, up to n-1 elements that the file contains).
This numbering provides what is called a graphic identifier. It is never written in
the binary file and is given by the order in which the elements in the file are written.
Nevertheless, from the user point of view, MiraMon usually shows a numbering
from 1, which seems more natural, except when highly technical information is
given. For example, when in a query by location MiraMon shows the text "Graphic
element 3 of 8", internally the element corresponds to the graphic identifier 2. In
polygon files, the universal polygon or polygon zero is the one that is "outside all
other polygons" (or inside holes when they have no content of any kind), and

https://www.miramon.cat/new_note/usa/notes/DBF_estesa.pdf
https://www.miramon.cat/help/eng/mm32/ap2.htm#INI

4

therefore the first "functional element" is the polygon with identifier 1; you will find
more information about the zero polygon in section 3.

It must be considered that the order in which the byte bits are written always
follows the Intel convention, not the Motorola one. In this document the name
"double" refers to a 64-bit real number (termed double in the C programming
language); doubles have enough numerical precision and range to store the
coordinates used in geographic information.

Comment on offsets: In addition, a general comment should be noted with
reference to any offset that appear in these specifications:

Up to and including version 1.1, the offset value that documents where to look for
an element (an X,Y coordinate, a Z coordinate...) was stored in a 4-byte unsigned
integer variable (the maximum value that could be stored was 4 294 967 295),
meaning that the first Z coordinate of the last stored point could be, at most, at
the byte position corresponding to slightly before the end of the file size of about
4.29 Gbyte (in this document we use the prefixes of mega (M), giga (G) or tera
(T) as in SI, not as in computing: dividing by multiples of 1000, not 1024).

From version 2.0 this number is expanded to 8 bytes, which can reach files of
18 million Tbytes. It will hardly need to be expanded further in our lifetime (or so
must have thought those who believed that 4 Gbyte of memory was "virtually
infinite", like the creators of the C language, who foresaw that the fseek() function
only needed an integer of 32 bits to indicate an offset). The same goes for object
identifiers: they become encoded with a 64-bit unsigned integer and, therefore,
the number of possible objects is virtually infinite.

5

2.1. Structured headers common to all files

2.1.1. Header common to all structured vector files

All structured vector files in MiraMon have a common part at the beginning: the
topological header. This header has a size sizeof_TH, which is 56 bytes (48
bytes in version 1.x). The structure and content of the rest of the file depends
on whether it contains points, arcs, nodes or polygons.

Description of the sizeof_TH bytes header:

 Topo Header
(TH)

0 3
File type (PNT, ARC, NOD,
POL)

3 2 Version (" 0"-"99")

5 1 "."

6 1 Subversion ("0"-"9")

7 1 Flag (1 byte)

8 8 Bounding box: Minimum X

16 8 Bounding box: Maximum X

24 8 Bounding box: Minimum Y

32 8 Bounding box: Maximum Y

40
8

(4 in v. 1.x)
Element count

48
TH+44

in v. 1.x

8
(4 in v. 1.x)

Reserved

File type, Version, Subversion

It is a string consisting of 3 characters declaring the file type (PNT, NOD, ARC
or POL and that matches the file extension) and 4 characters that denote the
format version, with one decimal place; these 4 characters align to the right. For
example, a typical start is: "PNT 1.1". If one day a 12.3 version would exist, the
string will be: "PNT12.3".

In version 1.x the number of bytes intended to indicate the (integer) number of
objects is 4 and therefore up to 232 elements (~4200 million elements) can be
saved.

As of April 15, 1997, an version 1.1 to support 3D coordinates (X,Y,Z) was
designed that faithfully kept downward compatibility with the initial 1.0 version,
which only supported 2D (X,Y) coordinates.

6

On March 21, 2023, a second version was designed, 2.0, which faithfully
preserves the philosophy of 1.1, but no longer supports reading by applications
compiled without knowing the specifications of 2.0. This version arises from the
need to expand both the number of graphic elements that a file can contain, as
well as the location of the coordinates of these objects within the files; these
values are encoded in unsigned 8 byte (64-bit) integers. Since 8 bytes are used,
in version 2.0 the total number of possible elements is 264 elements (~18 million
Tbyte).

Later in this document we explain how to access the coordinate location for
versions 1.x and 2.0.

Flag

The byte flag can define up to 8 logical properties in the respective bits (True: 1
or False: 0) with different meanings depending on the nature of the geometric
objects of the file. The following bits are defined at the date of this document.
Bits valid for PNT, ARC, NOD and POL files:

bit 0

Indicates that the topology has been verified by an application considered reliable.
A value of 1 informs that the file has been generated with a MiraMon application
that guarantees that the indicated topology is correct, or that the file has been
imported from another format where topological relationships were present and
considered reliable.

bit 1

Indicates that the file has been generated with a MiraMon application. Note that
this bit can be set to 1 even if the file does NOT contain topology at this time.

Bit only valid for PNT, ARC and POL files (in NOD files it has to be 0 in versions
1.x and 2.0).

bit 2

For PNT: A value labeled as 1 indicates that the point file comes from a POL file
via the MiraMon support application (MSA) "Etiqueta" ("Label") and that contains
a label on polygon zero. The MiraMon MSA "AtriTop" checks it to decide whether
to inherit attributes of the polygon zero. When in doubt, write a 0 in the bit.

For ARC: A value of 1 indicates that the arc file contains only edges of polygons.
This means that a total cycling process (in which all arcs are involved) has been
possible, which guarantees that the file does not contain either end nodes or arcs
with the same polygon on both sides (dumbbells). If in doubt, write a 0 in the bit.

For POL: A value of 1 indicates that the file has been correctly tagged with the
MiraMon "AtriPol" or "AtriTop" MSA, or with another MiraMon MSA such as
"RasTop". Specifically this means:

 There is no label in polygon zero.

 Does not present incoherent re-labeled polygons.

https://www.miramon.cat/help/eng/msa/Etiqueta.htm
https://www.miramon.cat/help/eng/msa/AtriTop.htm
https://www.miramon.cat/help/eng/msa/AtriPol.htm
https://www.miramon.cat/help/eng/msa/AtriTop.htm
https://www.miramon.cat/help/eng/msa/RasTop.htm

7

 There are no polygons without labels.

In case of doubt or in the NOD case, write a 0 in the bit.

bit 3

Bit only valid for PNT and POL files:

For PNT: A value of 1 indicates that the point file comes from a POL file via the
MiraMon "Etiqueta" ("Label") MSA and does not have a label on polygon zero.

For POL: A value of 1 indicates that the polygon file contains groups (or regions)
in polygons different from the polygon zero. If topology is not verified bit 0 must
be turned off.

When in doubt, write a 0 in the bit.

bit 4

Only for PNT and ARC: The file presents 3D coordinates. POL and NOD files can
be 3D, but their Z coordinates are always contained in the corresponding ARC
file.

bit 5

Only applies to polygons. A value of 1 means that the arcs involved in the cycling
(remember that unused arcs are allowed) are used only once. It cannot be
combined with bit 0 since this last flag would imply that the arcs would be used
twice (at least against the polygon zero) and that overlays would be prohibited,
situations that we want to allow in the case of the explicit polygons (not
topological). See also the "Note on explicit polygons" at the end of the document.

bit 6

For POL: A value of 1 indicates that the polygon file contains groups (or regions)
in the polygon zero. This can be interpreted as: some polygon different from
polygon zero has one or more holes inside. This bit together with bit 3 allows to
know all the information regarding groups in a polygon file. If topology is not
verified, bit 0 must be turned off.

When in doubt, write a 0 in the bit.

https://www.miramon.cat/help/eng/msa/Etiqueta.htm

8

Bounding box

Indicates the total bounding area in the order minX, maxX, minY, maxY, as in the
documentation REL file (all the bounding boxes of the binary files respect this
agreement). A double (real 64-bit) value is used for each member of the bounding
box.

Element count

Indicates the total number of entities in the file. An unsigned __int64 is used
(unsigned __int32 in v. 1.x).

Reserved

They are reserved for future extensions or for internal use. Documented internal
uses are:

 During intensive file structure modification operations, such as during
digitizing or during other formats import:

o Bit 0 of the first reserved byte will be 1 if the XY coordinates of the
ARC (or, more rarely, PNT) files are not in the zone after AH (TH in
points), but in a file located in the same directory, with the same
name, and with the "extension" "*#.~xy" (where # is A for arc layers
and T for point layers). In this situation, and in the case of ARC/PNT
files, the offsets recorded in AH/TH will refer to positions in this
"*#.~xy" file, which will be rewritten to offsets in the ARC/PNT file
when the modification of the file is finished and the part of
coordinates is written in the ARC/PNT file, and the file "*#.~xy" is
removed.

o For the polygons case, bit 0 of the first reserved byte will be 1 if the
arc indices of the POL files are not in the zones after PH but in a file
located in the same directory, with the same name, but with
"extension" "*P.~idx". In this situation the offsets recorded in PH will
refer to positions in this "*P.~idx" file, which will be rewritten to
offsets in the POL file when the modification of the file is finished
and the indices part is written in the POL file, and the "*P.~idx" file
is deleted.

o For the nodes case, bit 0 of the first reserved byte will be 1 if the
indices of confluent arcs at each node of the NOD files are not in
the zones after NH, but in a file located in the same directory, with
the same name, but with the "extension" "*N.~idx". In this situation
the offsets recorded in NH will refer to positions in this "*N.~idx" file,
which will be rewritten to offsets in the NOD file when the
modification of the file is considered complete, and the index part is
written in the NOD file and the "*N.~idx" file is deleted.

o Bit 1 of the first reserved byte will be 1 if the Z coordinates of the
PNT or ARC files are not in the zones after TL or AL, respectively,
but in a file located in the same directory, with the same name, but

9

with the "extension" "*#.~z" (where # is T for point layers and A for
arc layers). In this situation the offsets recorded in ZD will refer to
positions in this "*#.~z" file, which will be rewritten to offsets in the
PNT or ARC file when the modification of the file is finished and the
coordinates’ part is written in PNT or ARC files, and the "*#.~z" file
is deleted.

2.1.2. Altitudes for the 3D file case.

In the case of PNT and ARC, if the file is 3D, there are two sections to define
altitudes.

Section Z.

Section Z is divided into three subsections:

Subsection ZH. 32-byte header that is defined below.
 Z Header

(ZH)

ZH 16 Reserved

ZH+16 8 Bounding box: Minimum Z

ZH+24 8 Bounding box: Maximum Z

 ZD

Reserved

16 bytes that are reserved for future extensions. Filled with 0.

Bounding box: Minimum Z

Minimum value of all Z in the file. One double is used.

Bounding box: Maximum Z

Maximum value of all the Z in the file. One double is used.

10

Subsections ZD.

For EACH ITEM (point or arc) a 32-byte header is written (24 bytes in
version 1.1) with the following structure.

 Z Description
(ZD)

ZD 8 Bounding box: Minimum Z

ZD+8 8 Bounding box: Maximum Z

ZD+16 4 Z count

ZD+20
(non-existent

in v. 1.1)

4
(non-existent

in v. 1.1)
Reserved

ZD+24
8

(4 in v. 1.1)
Offset of 0th ZL

 ZL

Bounding box: Minimum Z

Minimum value of all the Z of the point.

Bounding box: Maximum Z

Maximum value of all the Z of the point.

Z count

In case of PNT: Number of point altitudes (value expressed as a negative
number). The number of altitudes is always a negative or a zero value in
point files and indicates the number of point altitudes. In the arcs section
we describe the meaning of a "Z count" when it is a positive value (which
in points does not make sense).

In the case of ARC: Number of arc altitudes. If the number of altitudes is
positive this indicates the number of altitudes for each vertex of the arc,
and all the altitudes of the vertex 0 are written first, then those of the vertex
1, etc. If the number of altitudes is negative this indicates the number of
arc altitudes, understanding that all the vertices have the same altitude (it
is the case of a contour line, for example). Use -1.0E+300 as NoData if
one of the altitudes of any vertex is not known (implementation note in the
MiraMon software: this value will correspond to the
"const double NODATA_COORD_Z_v_2" variable of PrjMMVGl.h/c).

Note on NoData in Z: As a result of a research about the reliability
in the comparison of double precision reals done in 2017 by Xavier
Pons (and which is part of the document PrecisioEnReals_*.doc) it

11

was proposed, for version 2.0 only, a
"const double NODATA_COORD_Z_v_2" that defines,
like -VALOR_ESTAD_INDEFINIT, at 2.9E+301 for the reasons of
direct comparison and reliable printing explained in NOTE_XP_30-
08-2017_30 of the EstadStr.h file of the MiraMon code, at the time
1.0E+300 was abandoned as a VALOR_ESTAD_INDEFINIT. If in
reading and writing the comparison were easy and there was no
need to strongly fork the code, the new value could be adopted, but
this fork would delay the implementation of the v. 2.0 of MiraMon
structured vector files and, moreover, in practice the old value
1.0E+300 has not yet been problematic for direct comparisons with
NODATA_COORD_Z (i.e., it has not been necessary to use, in the
MiraMon code the very slow functions of the family
"double_diferents..."). Another possibility, much better, which is left
here written but which will not be applied yet in v. 2.0, is reserving
an 8-byte space for Z data in the disk format, in the first reserved
bytes of the Z Header (ZH), and loading this value into the memory
structure, so that, when reading a file into memory there would be
1.0E+300 in versions where this reservation does not exist (and the
value 1.0E+300 is assumed) while, in versions already having
NoData written to this disk position, the memory would contain
whatever it is set on disk (by default: NODATA_COORD_Z_v_2).
In the code it would be elegant because it will be as in raster files,
where a member of the structure specifies the NoData value. When
writing, the value indicated in the structure member
(NODATA_COORD_Z in versions 1.x or 2.0 of the file and, later,
NODATA_COORD_Z_v_2) should be used. This step will be
finished in an ulterior version (perhaps 2.x) in order to be able to
explicitly indicate still more reliable NoData values (which support a
comparison with an equal and which do not have problems when
their decimals are written) and to make potential problems
disappear both in the MiraMon code and in the code from the GDAL
libraries.

Since in the MiraMon structured model polygon edges are described by
arcs, the explanations in this paragraph apply to polygon edges. Similarly,
Z values of nodes are contained in the ARC file.

Example:

A 4-vertices arc with number of altitudes 2: the altitudes of the first vertex
will be written, then those of the second, then those of the third, and finally
those of the fourth. Total: 4x2=8 altitudes.

An arc of 4 vertices with number of altitudes -2: the two altitudes of the arc
are written. Each vertex will have these two altitudes in the same order in
all the vertices, although they will only be written once.

Offset of 0th ZL

12

Indicates the offset where the first Z coordinate (typically an altitude) is
written. This is only relevant if the number of altitudes of this point is
different from zero.

Subsections ZL.

The ZL section contains a list of altitudes of each point or arc vertex.
 Z List (ZL)

ZL 8 Z Coordinate

 ...

Z Coordinate

PNT case: Altitude of the point that is represented. One double is used.

ARC case: Altitude of the indicated vertex of the arc that is represented,
or of the whole arc. One double is used.

2.2. Points file .pnt

The point file format (PNT) contains two sections (three in the 3D case),
described below:
Section TH. Common header in all files (sizeof_TH), previously described. The
"File type" field corresponds to the "PNT" string.

Section TL. For each POINT the coordinates are written (16 bytes).

The first point is written in offset sizeof_TH, which is where the header always
ends.

13

Description of the 16 bytes:

 PoinTs List
(TL)

TL 8 X Coordinate

TL+8 8 Y Coordinate

 ...

X Coordinate

X coordinate of the point that is represented. One double is used.

Y Coordinate

Y coordinate of the represented point. One double is used.

When flag 4 of the "Topological header common to all files" section is activated
(1), a section 3, described below, exists.

Section Z (applies only in case the file is 3D).

The description of this section corresponds to section Z of the section "2.1.2.
Altitude for the case of 3D file".

2.3. Arcs files .arc

The arc file format (ARC) contains three sections (four in the 3D case) described
below:

Section TH. Common header in all files (sizeof_TH), previously described. The
"File type" field corresponds to the "ARC" string.

Sections AH. For each ARC, a header of size sizeof_AH is written, which is 72
bytes (56 bytes in version 1.x). The first header is written in offset sizeof_TH,
which is where the common TH header always ends. The rest of AH is in the
offset sizeof_TH+sizeof_AH*id_arc.

14

Description of the sizeof_AH bytes of an arc header:

 Arc Header
(AH)

AH 8 Bounding box: Minimum X

AH+8 8 Bounding box: Maximum X

AH+16 8 Bounding box: Minimum Y

AH+24 8 Bounding box: Maximum Y

AH+32
8

(4 in v. 1.x)
Element count

AH+40
AH+36 in v. 1.x

8
(4 in v. 1.x)

Offset of i-th AL

AH+48
AH+40 in v. 1.x

8
(4 in v. 1.x)

Fist node id

AH+56
AH+44 in v 1.x

8
(4 in v. 1.x)

Last node id

AH+64
AH+48 in v. 1.x 8 Length

 (AL)

Bounding box

Indicates the bounding box of the arc described in this header in the order minX,
maxX, minY, maxY. One double is used for each member of the bounding box.

Element count

Indicates the total number of arc vertices described in this header. One
unsigned __int64 (unsigned __int32 in v. 1.x).

15

Offset of i-th AL

Offset of the first arc vertex described in this header. One unsigned __int64 is
used (unsigned __int32 in v. 1.x).

First node id

Identifier of the initial node of the arc. This identifier refers to the list of node
identifiers in the node file associated with the arc file. One unsigned __int64 is
used (unsigned __int32 in v. 1.x).

Last node id

Identifier of the final node of the arc. This identifier refers to the list of node
identifiers in the node file associated with the arc file that. One unsigned __int64
is used (unsigned __int32 in v. 1.x).

Length

Length of the arc that is described, in the same reference system as the
coordinates. One double is used. Note that lengths over the ellipsoid are also
computed, but stored in the main table (*A.dbf).

AL

Immediately after the succession of AH it would be appropriate for AL sections to
start appearing, but it is not necessary since each AL section can be found from
the offset indicated in the corresponding AH section.

Section AL.

List of arc coordinates. These are the coordinates corresponding to each
individual arc from the number of arc vertices defined in the 32nd byte of the
corresponding AH and of the offset defined in the 40th byte (36 in v. 1.x) of the
corresponding AH.

For each VERTEX of the arc, its coordinates (16 bytes) are written.

Description of the 16 bytes:

 Arc List (AL)

AL 8 X Coordinate

AL+8 8 Y Coordinate

 ...

16

X Coordinate

X coordinate of the vertex that is represented. One double is used.

Y Coordinate

Y coordinate of the represented vertex. One double is used.

When flag 4 of the "Topological header common to all files" section is on (1), a
Section Z is found, described below.

Section Z (only applies in case the file is 3D)

The description of this section corresponds to section 1 of the section "2.1.2.
Altitude for the case of 3D file".

2.4. Nodes file .nod

The format of node files (NOD) contains three sections, described below:

Section TH. Common header in all files (sizeof_TH), previously described. The
"File type" field corresponds to the "NOD" string.

Sections NH. For each NODE, a header of size sizeof_NH is written, which is 12
bytes (8 bytes in version 1.x).

The first header is written in offset sizeof_TH, where the common TH header
always ends. The rest of NH are in the offset sizeof_TH+sizeof_NH*id_nod.

Description of the sizeof_NH bytes node header:

 Node Header
(NH)

NH 2 Arcs count

NH+2 1 Node type

NH+3 1 Reserved

NH+4
8

(4 in v. 1.x)
Offset of i-th NL

 (NL)

Arcs count

Indicates the total number of arcs that converge at the described node. An
unsigned short int (16-bit) is used.

17

Node type

Indicates the node type. It is used from version 1.1. Possible types of nodes are:
typical node (Node type=0), line node (Node type=1), ring node (Node type=2)
and end node (Node type=3). An unsigned char (8-bit) is used.

Reserved

It remains reserved for future extensions. A byte is used and currently takes the
value 0.

Offset of i-th NL

Offset the first of the arcs that converge at the described node. One unsigned
__int64 is used (unsigned __int32 in version 1.x). Offsets must be aligned to a
multiple of 8 bytes. Thus, a ring node (Arcs count=1+reserved) occupies the
same as a line node (Arcs count=2 and no filling is required). For this reason, the
transformation of a ring node to a line node or vice versa does not alter the offsets
of the file.

NL

Immediately after the succession of NH, NL sections could begin to appear, but
it is not necessary since each NL section can be found from the offset indicated
in the corresponding NH section.

Sections NL

List of arc identifiers that connect to different nodes. Access is granted to each
one from the offset of i-th NL.

For each NODE, arc identifiers that converge at the described node are written.
Each item in this sequence of identifiers (as many as arcs converge at the node)
occupies 8 bytes (4 in v. 1.x):

Description of the 4 bytes:
 Node List

(NL)

NL
8

(4 in v. 1.x)
Arc id

 ...

Arc id

Arc identifier in the arc file that converges at the described node. One unsigned
__int64 is used (unsigned __int32 in v. 1.x).

2.5. Polygons file .pol

The polygon file format (POL) contains four sections, described below:

Section TH. Common header in all files (sizeof_TH), previously described. The
"File type" field corresponds to the "POL" string.

18

Sections PS. They contain, for each ARC, the identifiers of the polygons being
on the left and on the right (in this order) of the described arc. The topological
information of the first arc is written in offset sizeof_TH (where the common
header always ends). Note, as explained in the introduction, that a second layer
of polygons based on the same layer of arcs will refer to other arcs, specifically
those that are needed to cycle (build) the polygons of the second layer. This
header has a size of sizeof_PS, which is 16 bytes (8 bytes in version 1.x).

Description of the sizeof_PS bytes:

 Polygon side (PS)

PS
8

(4 in v. 1.x)
Left side polygon

PS+8
PS+4 in v. 1.x

8
(4 in v. 1.x)

Right side polygon

 ...

 PH

Left side polygon

Polygon located on the left of the described arc. One unsigned __int64 is used
(unsigned __int32 in v. 1.x).

Right side polygon

Polygon located on the right of the described arc. One unsigned __int64 is used
(unsigned __int32 in v. 1.x).

In v. 2.0, the arcs that do not participate in cycling will be set to
"0xFFFFFFFFFFFFFFFF" (maximum value for an unsigned __int64). In v. 1.x,
the arcs not participating in the cycling have the value at "0xFFFFFFFF"
(maximum value for an unsigned __int32).

Sections PH. For each POLYGON, a header of size sizeof_PH is written, which
is 80 bytes (64 bytes in version 1.x). The first header is at
sizeof_TH+sizeof_PS*n_arc and the rest at
sizeof_TH+sizeof_PS*n_arc+sizeof_PH*id_pol.

19

Description of the sizeof_PH bytes of a polygon header:

 Polygon Header
(PH)

PH 8 Bounding box: Minimum X

PH+8 8 Bounding box: Maximum X

PH+16 8 Bounding box: Minimum Y

PH+24 8 Bounding box: Maximum Y

PH+32
8

(4 in v. 1.x)
Arcs count

PH+40
PH+36 in v.

1.x

8
(4 in v. 1.x)

Arcs in external rings count

PH+48
PH+40 in v.

1.x

8
(4 in v. 1.x)

Ring count

PH+56
PH+44 in v.

1.x

8
(4 in v. 1.x)

Offset of i-th PL

PH+64
PH+48 in v.

1.x
8 Perimeter

PH+72
PH+56 in v.

1.x
8 Area

Bounding box

Indicates the bounding box of the polygon described in this header in the order
minX, maxX, minY, maxY. A double is used for each member of the bounding
box.

Arcs count

Indicates the total number of arcs needed to cycle the polygon described in this
header. One unsigned __int64 is used (unsigned __int32 in v. 1.x).

20

Arcs in external rings count

Indicates the total number of outer arcs that cycle the polygon described in this
header. In v. 2.0, if "0xFFFFFFFFFFFFFFFF" ("0xFFFFFFFF" in v. 1.x) is
indicated, it means that anything is known about which arcs are defining internal
rings (internal borders) and which are external rings; in this case the bit 0 of the
corresponding element from the Polygon Arc List VFG (see the PAL section that
follows) is always 0. One unsigned __int64 is used (unsigned __int32 in v. 1.x).

Ring count

A polypolygon is a polygonal entity that can be formed by more than one ring.
This set of bytes indicates the number of polypolygon rings described in this
header. In case of polypolygons with holes, the holes count like inner rings of the
polypolygon. One unsigned __int64 is used (unsigned __int32 in v. 1.x).

Offset of i-th PL

Offset to the first arc of the polygon described in this header. It is advised to use
multiples of 8. One unsigned __int64 is used (unsigned __int32 in v. 1.x).

Perimeter

Perimeter of the polygon described in this header, in the same reference system
as the coordinates. One double is used. Note that perimeters over the ellipsoid
are also computed, but stored in the main table (*P.dbf).

Area

Area of the polygon described in this header, in the same reference system as
the coordinates. One double is used. Note that areas over the ellipsoid are also
computed, but stored in the main table (*P.dbf).

PAL sections. For each POLYPOLYGON their arcs are written in a header of size
sizeof_PAL, which is 9 bytes (5 bytes in version 1.x).

Description of the sizeof_PAL bytes:
 Polygon Arc List (PAL)

PAL 1 VFG

PAL+8
8

(4 in v. 1.x)
Arc id

 ...

21

VFG

The byte VFG (standing for "Vora (external edge) – Fi (end) – Gir (flip)") is used
to determine characteristics of the arc that composes the polygon. When a bit is
set (value 1) the property it defines is considered to be TRUE; otherwise, FALSE.

The following bits are defined at the date of this document.

bit 0 (V): Indicates whether the arc is part of an outer ring (value 1) or of an inner
ring (0) of the polypolygon.

bit 1 (F): Indicates whether the current arc ends the ring (value 1) or if it is
necessary to bind with another arc to close the ring (value 0). Therefore, if the
number of 1’s (value 1) of a polypolygon is counted, this coincides with the
number of rings forming the polypolygon.

bit 2 (G): It can have two interpretations:

a. This Boolean indicates whether the polygon in question is in the left side
(value 1) or in the right side (value 0) of the arc, according to the drawn
direction of vertices in the ARC file.

b. In the case of defining explicit polygons (non-topological), this bit indicates
whether the plot order of the vertices written in the arc file must be flipped
(value 1) to write this ring fragment in the sequence of coordinates that
describe the entire ring explicitly, or if the order do not have to be flipped
(value 0); this is due to the fact that rings of explicit polygons must be
constructed making the polygon itself remaining to the right, which allows
the outer rings to be automatically calculated with a positive area and the
inner rings with a negative area, and to be constructed in this manner it
may be necessary to have to flip (invert) the order of the sequence of the
vertices.

NOTE: The polygon always stands to the right of the succession of coordinates
explicitly describing the ring. This criterion coincides with the criterion of ArcInfo.
This means that the outer rings cycle clockwise and the internal rings
counterclockwise.

Arc id

Arc identifier in the arcs file which is the base of this polygon file. One
unsigned __int64 is used (unsigned __int32 in v. 1.x).

22

2.6. Format summary for all file types

Below is a summary table of all formats of MiraMon structured vector files.

Version 1.x:

 PNT ARC NOD POL

TH 48 TH 48 TH 48 TH 48

TL 16 AH 56 NH 8 PS 8

TL ... AH ... NH … PS ...

ZH 32 AL 16 NL 4 PH 64

ZD 24 AL ... NL ... PH ...

ZD ... ZH 32 PAL 5

ZL 8 ZD 24 PAL ...

ZL ... ZD ...

 ZL 8

 ZL ...

Version 2.0:

 PNT ARC NOD POL

TH 56 TH 56 TH 56 TH 56

TL 16 AH 72* NH 12* PS 16*

TL ... AH ... NH ... PS ...

ZH 32 AL 16 NL 8* PH 80*

ZD 32* AL ... NL ... PH ...

ZD ... ZH 32 PAL 9*

ZL 8 ZD 32* PAL ...

ZL ... ZD ...

 ZL 8

 ZL ...

* Marks that there is a difference from v. 1.x vs version 2.0. The difference is
mainly due to two facts: an expansion in the number of bytes for the object
identifiers, which go from 4 to 8 bytes, and an expansion in the offsets where the
coordinates or identifiers of the described objects start, also moving from 4 to 8
bytes. In addition, there is some additional reserve of space that, at the same
time, allows a more generalized 8-byte alignment (not total because there are
structures, such as the NH, that have a smaller size).

3. Some considerations about the files containing arcs or
polygons

 There is always a polygon, which is called polygon zero (or universal
polygon). This makes sense in a file with guaranteed topology, but not in
a file of explicit polygons. The polygon zero is composed of all arcs that
form rings of all other polygons in the file, provided these arcs are not in
contact with any other polygon. For example, in an archipelago in which
the sea is the polygon zero, the different inner rings would be the outer

23

edges of the islands of the archipelago. In the case of a file composed of
a single polygon with a hole (not with another polygon within the hole) the
polygon zero has as arcs all the arcs of the file. When the zero polygon
does not have a topological meaning (typically in layers of explicit polygons)
it consists of zero arcs.

 In the case of being a file of explicit polygons, the polygon zero is
documented with the header filled with 0 and has no PH or PAL section.

 Group files contain polygons grouped into groups of polygons. In these
files object identifiers can refer to conventional polygons (with or without
holes) or to groups of polygons. Each object has a single PH section.

 The order in which the arcs that constitute a polygon is written
(polypolygon) is:

1. outer ring
2. inner rings contained in the previous outer ring
3. outer ring (if there are other rings)
4. inner rings contained in the previous outer ring.
5. ...

 Each inner edge counts on the total count of rings.

 The perimeter of the polygon zero is the sum of lengths of all edges and
has a positive sign.

 The area of the polygon zero is the sum of the areas of all polygons and
with a forced negative sign.

Note on explicit polygons: A file of explicit polygons, whether of groups
or not, should be defined as a POL file with the following particulars:

o In the flag of the section TH, bit 0 is not set and bit 5 is set. Bit 3 of
this flag has the value as convenient.

o The section PS (of the polygons at each side of each arc) contains
the graphic identifier of the polygon on one side and the polygon
zero on the other, depending on the polygon being in the right or
left side.

o Polygon zero is constituted by 0 arcs and has no PAL section.

A file of NON-TOPOLOGICAL groups (which support overlays) must be
defined as a POL file with the following particularities:

 In the flag of the section TH, bit 0 is not set and bit 3 is set.

 The PS section (of the polygons of each side of each arc) is filled with
0xFFFFFFFFFFFFFFFF (maximum value of type unsigned __int64) in
v. 2.0 (0xFFFFFFFF (maximum value of type unsigned __int32) in v.
1.x).

 The polygon zero is formed by 0 arcs and does not contain a PAL
section.

4. Illustrative example of complex polygons

The following example illustrates one of the most complex cases: two polygons,
the first with two holes and three enclaves, and the second without a hole and
one enclave.

24

The polygon on the left part of the example (blue) is the polygon with identifier 1,
because polygon zero "cannot be seen" (it is not painted). The polygon on the
right part is the one with index 2 (green). The identifier of the arcs is clearly seen.
The identifier of the two polygons is highlighted with a red mark. The rest of the
identifiers correspond to the identifiers of the arcs, from the first, with value 0,
which encircles the largest polygon, to the last, with value 7, which is located on
the right side of the figure.

In order to clarify this example, we describe some interesting questions to
highlight:

 The number of elements in this polypolygon is 2, not 6 (which is the
number of rings). This is specified in the header of the polygon file
described in the section TH, specifically in byte 40 (and occupy 8 bytes [4
in v. 1.x]).

 The byte 7 (flag) of the header of the polygon file described in section PH
will have set, at least, bit 3.

 Section PS, which determines which polygon is in the left and right side,
looks like this: 01-10-10-01-01-01-01-02-02 (hyphens are only visual aids).

 In section PH (headers of the polygons) it should be noted that the header
of polygon 1 has 6 Arcs count, 4 Arcs in external rings count and 6
Ring count, while the head of polygon 2 will have 2 Arcs count, 2 Arcs
in external rings count and 2 Ring count.

 Finally, section PAL will have the following aspect (VFG is shown as a set
of three bits):

0: 1-1-0, 0
 0-1-1, 1 (it must be flipped so that the direction of a hole is counterclockwise)
 0-1-1, 2 (it must be flipped so that the direction of a hole is counterclockwise)
 1-1-0, 3
 1-1-0, 4
 1-1-0, 5

25

1: 1-1-0, 6
 1-1-0, 7

