
1

MMZ AND MMZX, OR COMPRESSED MIRAMON MAP,
FORMATS SPECIFICATIONS

Authors of the document: Joan Masó and Xavier Pons

First proposal: 22-03-1998
Last modification and version of the document: 05-07-2023. v. 4

1. Background and Motivation, and Overview

Storing the different parts of a geographical dataset for preservation or dissemination
purposes usually requires storing more than one file, links, etc. For example, the format
in MiraMon requires a minimum of three files, as well as in the case of the Shapefile
format. We could use a single ZIP file to wrap up all those files, but this ZIP file is not
easy to build when, for example, multiple layers in different folders are combined;
moreover, a conventional ZIP file does not provide explicit information about the
structure from the geographical dataset point of view, the entry point to explore its
contents, etc. Back in 1997 we were not aware of any format that fit to our needs for
distribution or preservation of geographical datasets. That's why in 1997 we started the
design of the Compressed MiraMon Map, or MMZ, finishing its first version in March
1998. MMZ added the possibility to include certificates for integrity check and
authorship certification, being a requirement for automatic distribution of geographical
information. From that moment on, the Government of Catalonia started to distribute
most of their environmental datasets in MMZ, along with a free Universal MiraMon Map
Reader; in 2016 they still continue to do so. In 2000, this idea won the Möbius
International award special mention of the jury for the best science and technology
application in the Internet.

An MMZ (pronounced M-M-Z in English) map is a standalone binary file with .mmz
extension that contains all the information necessary to visualize, analyze and recover
the information related to it. Information in MMZ is usually of the Geographic
Information (GI) type: It aggregates raster, vector, related data tables, symbolization
and files of any necessary kind, and can also include integrated metadata for datasets,
tables, etc. Typically, the information an MMZ contains is aggregated and described in
an MMM (MiraMon Map, an uncompressed, usually small, text file) that is also
embedded in the MMZ. An MMZ file is a multipart compressed format that takes
advantage of the gzip version of the deflate algorithm to compress and decompress the
data without losing any information (lossless compression). The MMZ format uses a
specifically designed header format to describe the table of contents of the file and
some metadata about the embedded parts.

2

The MMZ format specification is maintained by the MiraMon team, mainly integrated
into the Grumets Research Group (Universitat Autònoma de Barcelona and CREAF).
Change requests can be submitted to support@miramon.uab.cat for consideration.
However, in 2013 the MMZX format has been introduced to deprecate the MMZ.
MMZX shares the main characteristics of the original MMZ but is based on an ISO
internationally recognized standard. MiraMon continues supporting the MMZ format
and has no intention to discontinue the capacity to read and write it in the near future.

The format was initially designed to compress and contain MiraMon maps but, in fact,
supports the compression of any kind of MiraMon data as well as the content of a
directory. It is also used to distribute compressed packages and updates of MiraMon
software. The idea is complemented by an application capable of following all the links
present in the different pieces of information related to MiraMon maps and many other
GIS formats and to produce a list of dependencies. Once this list is created, each file in
the list is read, the relations between them are rewritten to make them compatible with
their relative positions in the resulting MMZ file hierarchy, and they are compressed
and stored as parts of the MMZ file. In addition, the application is able to certify some
files by adding some extra encrypted files with the information about the certification
entity. By reading these files, the MiraMon software is able to guarantee the integrity of
the original files and well as to acknowledge the authorship.

This format is able to share geospatial information in a single file that can be
decompressed and visualized automatically using the MiraMon Universal Map Reader
(https://www.miramon.cat/CAT/Prod-LectorUniversal.htm) or the MiraMon Professional
software (https://www.miramon.cat/USA/Prod-Professional.htm).

From the users perspective, once the MiraMon Universal Map Reader or the MiraMon
Professional are setup up in the computer, the file extension is registered and MMZ
files are visualized with a single click giving immediate access to a identical copy of the
original one. The information can be combined with other MMZ files and other local GIS
files in a single view. The information can also be decompressed to be integrated as
common GIS files to be analyzed professionally with GIS tools.

In MiraMon, the creation of an MMZ is done with the MMZ.exe application. In the future,
other application could create MMZ files too.

2. MMZ format details

Currently two MMZ versions have been defined. The initial MMZ format was the
version 1.0. The MMZ version 1.1 was produced in 2001 and added some extra
characteristics to the format.

MMZ was designed for Windows platforms. Byte ordering shall be little-endian and path
shall follow Windows operating system rules.

An MMZ file shall start with a package header. The order of the other sections
described bellow is not mandatory, only recommended. An MMZ enabled application
should be able to read the sections even if they are in a different order. An MMZ file
shall not end with an EOF mark.

The use of the .mmz extension is strongly recommended. This does not preclude that
other extensions can be used for specify purposes.

The MMZ MIME type shall be application/x-mmz.

https://www.miramon.cat/CAT/Prod-LectorUniversal.htm
https://www.miramon.cat/USA/Prod-Professional.htm

3

2.1. Package header section

All MMZ files shall start with a package header at least 16 bytes long. For the version
1.0, the meaning of this 16 bytes header shall conform to the description of the
following table. Version 1.0 could eventually support 64 bit offsets but there is no plans
that MiraMon will support that (use v 1.1 or MMZX instead).

Table 1: Package header structure. Version 1.0

Offset Number of
Bytes

Data Type Content

0 3 ASCII
File type magic number. Shall
be “MMZ“

3 4 ASCII
Version form “ 0.0” to “99.0”. In
this version shall be “ 1.0”.

7 1 Char 0x00

8 4 int32
Offset in byte of the first part
header.

12 4 int32 Reserved. Shall be 0.

Version 1.1 of the MMZ files starts with a package header 32 bytes long. For the
version 1.1 and 32 bit file offsets, the meaning of this 32 bytes header shall conform to
the description of the following table.

Table 2: Package header structure. Version 1.1. 32 bit offset

Offset Number of
Bytes

Data Type Content

0 3 ASCII
File type magic number. Shall
be “MMz“(cast insensitive)

3 4 ASCII
Version form “ 0.0” to “99.0”. In
this version shall be “ 1.1”.

7 1 char 0x00

8 4 int32
Offset in byte of the first part
header.

12 4 int32 Reserved. Shall be 0.

16 4 int32
Offset of the path variables
section, or -1 if not present.

20 4 int32 Reserved. Shall be 0.

24 4 int32
Offset of the group section,
or -1 if not present.

32 4 int32 Reserved. Shall be 0.

Version 1.1 of an MMZ file starts with a package header 32 bytes long. For version 1.1
and 64 bit file offsets, the meaning of this 32 bytes header shall conform to the
description of the following table.

Table 3: Package header structure. Version 1.1. 64 bit offset

Offset Number of
Bytes

Data Type Content

4

0 3 ASCII
File type magic number. Shall
be “MMz“(cast insensitive)

3 4 ASCII
Version form “ 0.0” to “99.0”. In
this version shall be “ 1.1”.

7 1 char 0x00

8 8 int64
Offset in bytes of the first part
header.

16 8 int64
Offset of the path variables
section, or -1 if not present.

24 8 int64
Offset of the group section,
or -1 if not present.

2.1. Compressed data section

After the package header, the compressed data parts usually follow. Parts are
compressed using the deflate algorithm used in the gzip compression. Compressed
parts shall start in offsets multiple of 8.

2.2. Part header section

After the compressed parts, part headers usually follow. The number of part headers
shall be the number of compression data parts in the file. Part headers shall start in
offsets multiple of 8

Table 4: Part header structure.

Offset Number of
Bytes

Data Type Content

0 4 ASCII Shall be “MMZ” + \0

8 4 int32
Offset of the next part header,
or -1 if there is no other one1.

12 4 int32 Reserved. Shall be 01.

16 4 int32
Offset of the compressed data
for this part1.

20 4 int32 Reserved. Shall be 01.

24 4 int32
Date of creation of the file
expressed as a long.2

28 1 int8
Hour of creation of the file. If
the hour is in UTC, add 100 to
the value.

29 1 int8 Minute of creation of the file

30 1 int8
Second of creation of the file
divided by 2.

31 1 bit flags
Attributes of the file. See Table
5

32 1 int8
Compression algorithm. See
Table 6

33 1 bit flags Other bit flags. See Table 7.

34 1 int8
Recommended path treatment.
See Table 8.

5

35 1 int8 Reserved. Shall be 0.

36 4 int32 CRC code of the file data.

40 8 uint64
Size of the compressed part in
bytes

48 8 uint64 Size of the original file in bytes

56 2 uint16
Size of the name of the file in
bytes (does not include a final
\0).

58 2 uint16
Size of the comment about the
file in bytes, or 0 if not used
(does not include a final \0).

60 4 uint32
Size of an extra field in bytes,
or 0 if not used (does not
include a final \0).

64 variable ASCII
Name of the file expressed in
OEM850 code (it is not null
terminated).

var variable ASCII
Name of a comment expressed
in OEM850 code (it is not null
terminated).

var variable ASCII
Name of an extra field
expressed in OEM850 code (it
is not null terminated) 3.

1 In case of 64 bit, offsets are required: the offset field and the next
reserved field are combined to form an int64 number.
2 Dates are expressed as numbers where the 4 first digits refers to the
year, the next 2 to the month and the last 2 to the day (e.g. December 31st
1991 is encoded as 19991231
3 Reserved and never implemented

Table 5: Attribute bit flags

Bit Content

1 Read only

2 Hidden file

3 System file

4 Reserved 1

5 Reserved 2

6 Archive
1 Reserved for volume letters but never used.

2 Reserved for folders but never used.

Table 6: Compression

Value Content

0 None

8 Deflated as used in gzip

Table 7: Other flags

Bit Content

6

1 Entry point1
1 Indicates that the part is an entry point to the
data. Typically the MMM file that needs to be
used to open the compressed data.

Table 8: Recommended path treatment

Value Content

1 Identical to the source

2
Relative to the new position of
the data

3
Substituted after the current
directory1

1 A substituted path is a full path where the ‘:’
has been replaced by a ‘$’ character (e.g.
C:\bob.txt -> C$\bob.txt).

2.3. Variables of path section
After part headers, the variables of path section usually follow. This section shall be
present if the file is in version 1.1 and an offset has been provided in the package
header. Variables of path section shall start in offsets multiple of 8. More than one
variable of path sections are allowed. This header is rarely used.

Table 9: Variable of path section structure.

Offset Number of
Bytes

Data Type Content

0 4 ASCII Shall be “MMZ” + \0

8 4 int32
Offset of the next variable of
path section, or -1 if there is no
other one1.

12 4 int32 Reserved. Shall be 01.

16 2 uint16
Size of the name of the
variable of path in bytes (does
not include a final \0).

18 2 uint16

Size of the descriptor of the
variable of path in bytes, or 0 if
not used (does not include a
final \0).

20 2 uint16
Number of candidates of a
value for the path variable

22 2 uint16
Size of the first candidate of a
value for the path variable
(does not include a final \0).

24 2 uint16 Size of the second candidate...

...

var variable ASCII
Name of the name variable of a
path in OEM850 code (it is not
null terminated).

var variable ASCII
Descriptor of the path variable
expressed in OEM850 code (it

7

is not null terminated).

var variable ASCII

First candidate of a value for
the path variable expressed in
OEM850 code (it is not null
terminated).

 Second candidate of...

...
1 In case that 64 bit offsets are required, the offset field and the next
reserved field are combined into an int64 number.

2.4. Group section
After variables of path section, group section usually follows. This section shall be
present if the file is in version 1.1 and an offset has been provided in the package
header. Group section shall start in offsets multiple of 8. Only one group section is
allowed. This header is rarely used.

Table 10: Group section structure.

Offset Number of
Bytes

Data Type Content

0 4 ASCII Shall be “MMZ” + \0

4 2 uint16
Size of the name of the group
in bytes (does not include a
final \0).

6 variable ASCII
Name of the group in OEM850
code (it is not null terminated).

3. Standardization and evolution of the format: MMZX: ISO
19165

In 2016 MiraMon complemented the MMZ file with the MMZX file format that fully
follows the OPC standard. OPC (also known as OOXML) is a packaging strategy that
integrates elements of the ZIP compression, XML documents, and the web MIME types
into an open standard that makes it easier to organize, store, and transport data. It was
defined by Microsoft and approved as ISO 29500-2 and ECMA-376. It is used by Office
2007 and newer versions of Word (.docx), Excel (.xlsx), and PowerPoint (.pptx), along
with XPS (.xps), Autodesk AutoCAD (.dwfx), etc. An OPC package can contain several
files with a directory structure in it. Each file is called a “part” and all OPC package part
names have to follow the URI restrictions and conventions. The format adds some
extra files to increase interoperability. It incorporates a standardized way of recording
file relations or links. It also incorporates a file with a few elements of metadata and a
thumbnail with a small image for presentation purposes. All these extra parts allow
some basic independent data maintenance, such as the extraction of a fragment of the
package, thus guaranteeing that all the related resources will be extracted without
needing to understand the actual encoding of the parts included in the package.

OPC is conceptually very similar to the KMZ and MMZ format, but offers some
advantages. KMZ is a compressed file that uses a ZIP file format following the solution
reuse criteria, but its structure is deeply related to the original KML. Therefore, it does
not comply with the completeness criteria, and KMZ strategy is not accurately
documented (it is not included in the KML specification) and thus, it does not comply
with the formality and metamodel identity criteria. MMZ was never submitted for

8

standardization or adopted by other vendors and has not reached a high popularity
outside the GIS community. OPC uses an accepted popular compression schema and
header (ZIP compression) but combines other advantages such as it can be directly
manipulated by other OPC compatible tools that recognize the file structure and
relations even if they are not able to identify or understand the format of some
compressed parts. Phillips and Allemang (2010) prefer it over other alternatives as a
file format for data archiving.

OPC format offers an opportunity for designing an standardized way to pack geospatial
information in a single file that internally uses the original data files that can be later
recovered as they were produced. Due to the similarities between the old MMZ format
and the OPC standard, we call this approach MMZX. Most GIS software offer the
capability to save a session composed by different information layers, symbolization,
presentation, metadata, etc. This "composition" format (e.g., the MiraMon Map, or
MMM) does not contain the information, but links to it. Recently the OGC has
introduced a new standardized format that also can to this: the OWS context. It is
possible to create a software that is able to collect the "context" file plus all the data
files and symbolization and configuration files and create an OPC package. Apart from
the geospatial data parts of the file, OPC specifies how to explicitly relate different parts
using .rels files (relations are composed of a source file and a target file, and the
purpose of this relation is like in the RDF format). These files are XML files that have
the same name as its respective source part adding “.rels” and placed in a “rels” folder.
Each of these files lists the target parts related to its source and the semantics of this
relation.

A complete description of the MMZX is available in this open access paper:

• Pons X, Masó J (2016) A comprehensive open package format for preservation
and distribution of geospatial data and metadata. Computers & Geosciences,
97:89-97. DOI: 10.1016/j.cageo.2016.09.001. http://dx.doi.org/10.1016/j.cageo.2016.09.001.

In 2018, ISO 19165 standard, "Geographic information -- Preservation of digital
data and metadata", has been approved, and the MMZX has become the first
implementation of it.

http://dx.doi.org/10.1016/j.cageo.2016.09.001

