

"EXTENDED DBF" FORMAT SPECIFICATION
(INCLUDES "EXTENDED NAMES" IMPLEMENTATION)

Authors of the document: Xavier Pons and Abel Pau

First proposal: 23-12-2011
Last modification and version of the document: 16-02-2024. 1.9

1. Background and motivation.

The DBF format, originally developed in the context of dBASE software, followed in
other software such as FoxBase and FoxPro, and extensively described in the
specialized literature and on the Internet, is, except for tabular forms in plain text,
perhaps the most popular of the alphanumeric data table formats. MiraMon can
access tabular data in DBF III, III+ and IV format (and supports some ulterior
additions, as F fields, etc), as well as tabular data (physical or as a result of query
expressions) contained in other file formats (such as XLS, MDB, etc) and in
databases (such as Oracle, SQL-Server, etc); in these last cases, the corresponding
ODBC drivers must exist and be properly installed and, with the exception of the
MDB and ACCDB (which supports direct access from MiraMon), a DSN file must be
created to access the data.

Despite the great potential given by the access to the various tabular sources
outlined above, in the MiraMon context DBF is often the chosen table format, both
for its simplicity and speed, as well as for not depending on third parties, or simply
because the certainty that, when disseminating information, it can be opened on a
computer with unknown installed drivers (so it is the default option for the creation
of MMZX and MMZ files, intended for wide distribution on the Internet). It should also
be remembered that the DBF tables can be linked to other DBF tables and to other
tables (MDB, SQL-Server, etc) by establishing links (joins) in which it is possible to
indicate the cardinality (1 to 1, 1 to many, etc) and the level of the compulsory nature

of the join resolution (dictionary type or not) in a set of relations that is not restricted
neither in the number of relations per field, nor in the number of relational levels.
These joins are stored in the corresponding REL files.

However, and due to its design time, the DBF format has several limitations. The
evolution of the DBF format after version IV was quite complicated (selling the
product between different companies, strange decisions such as the inclusion of
new numeric types that often did not contribute anything meaningful, etc [see
http://en.wikipedia.org/wiki/DBase]), so users’ and developers’ community generally
remains loyal to the III, III+, and IV formats for both reading and exporting. Currently
there is still one dBASE product for sale (http://www.dbase.com).

Some of the limitations of DBF IV have been overcome thanks to indications that are
also stored in REL files and are set from the MiraMon Universal Geospatial
Metadata Manager, GeM+. Some of the most outstanding are:

• The length of the file name, which in the original specification was 8+3, and
which is extended in MiraMon to any length supported by the operating
system. In addition, in MiraMon the names of the DBF files and the directories
where they are can contain spaces, accents, etc.

• The name length of each DBF field is limited to 10 characters and cannot
contain accented letters, spaces, special characters, etc. However, from the
GeM+ a free text descriptor can be indicated, without limitations of accents,
special characters, etc, for each field; in addition, the descriptor can be
multilingual if desired and supports a length, in characters, of:

max(_MAX_PATH+100,256)

• In tables previous to dBASE IV, the character set used in 'C' type fields was
not specified. MiraMon allows a flexible and configurable solution for these
cases and, as in dBASE IV tables, supports specifying the character set (byte
at offset 29), whereby the interpretation of accents and special characters is
no longer ambiguous.

• In fields with numerical content, their units cannot be indicated if they have
them. Instead, from the GeM+ these can be specified, as well be shown in
the queries, if desired.

• In DBF tables the quality of the content of each field cannot be indicated.
However, from the GeM+ this can be specified.

• In the DBF tables the treatment (categorical, ordinal or continuous
quantitative) of the content of each field cannot be indicated. However, from
GeM+ this property can also be specified.

Despite these important extensions introduced through REL files (which can also
benefit other tabular formats readable by MiraMon), there are other limitations of the
DBF format that cannot be solved except by introducing slight modifications to the
format itself. Among the most important, the following ones can be highlighted:

• Limiting the field number to 128 in dBASE III+ (dBASE book by Jordi Abadal,
p. 137, and Excel 2000 export criteria) or 255 (dBASE IV). This limitation

http://en.wikipedia.org/wiki/DBase
http://www.dbase.com/

cannot only be found in tables of all kinds, but is even more frequent in the
unique table created to resolve all the joins in the relation tree specified from
GeM+ when the relations are numerous, and especially when tables with
many fields are joined. Finally, it should be noticed that MiraMon does not
establish this distinction between dBASE III+ or dBASE IV versions and
assumes, for any classic DBF, regardless of version:

o 255

• The limitation of the number of characters, in fields of type 'C':
o 254

• The limitation of the format and length of the name of the DBF fields to 10
characters in capital letters (without supporting accented letters, ç, etc).

o 11 (including the null string terminator)

There are other possible improvements to mention that could be the subject of
discussion about the opportunity of their design and future implementation:

• Numbers are currently written as text that must be interpreted. It would be
convenient to define binary numeric types following the usual standards for
integer and real numbers.

• Support for variable-length text fields with a file indexing system that tells
where each record begins (although this would make access a bit slower).

• Support for unlimited length binary fields.

• Support for individual compression per record with a file indexing system that
tells where each record begins.

• Support for a mark of deletion of a field (column).

• Choose a text description of the header.

• The first 32-byte "miniheader" could be extended to accommodate future
extensions. This involves coding the size of the miniheader itself.

• The description of each field could be extended. This involves encoding the
size of a field description in the miniheader.

• Extend the maximum number of records to an unsigned __int64 (64-bit
integer). The value can be written by combining the 4 bytes of the classic DBF
plus the 4 bytes 16-19 of the header.

• The internal date of the file could be removed. It has always been an
important problem and is redundant with the one of the file system. In
addition, it does not include the time and, therefore, it is not useful for
restoring the exact date-time of a file that has been emailed and has lost the
time stamp.

• A new date-time field could be created.

The MiraMon proposes to solve the most important of these limitations and adopt
some improvements, while establishing a variation of the DBF format that has been
called "extended DBF".

2. Characteristics and use of the "Extended DBF" format.

2.1 If a table does not need to overcome the limitations of the classic DBF, it is

preferable to write it in this format so that it is readable by other software that
does not support the extended DBF. Note that the format does not maintain
backward compatibility (a software that reads classic DBF will not read an
extended DBF, even partially, unless it has implemented the proposal explained
in this document).

2.2 The file extension is .dbf as in classic DBF.
2.3 The first byte is 0x90. To check if the software can read this, it just checks for

the '9', which allows it to change the second number for backward compatible
modifications. Smaller values are not used to avoid conflict with other
numberings.

2.4 The number of possible fields becomes 13.4 million (the exact maximum value
is justified in the next section).

2.5 The length of a record is an unsigned __int32, counting the record deleted
byte.

2.6 The size of a C field can reach unsigned __int32 - 1 (one byte is given up to fit
the record deleted byte).

2.7 The file will continue to contain the end of field definition mark (Header Record
Terminator - 0x0D) as in the classic DBF since a fork would have to be made in
the code everywhere where the offset to the first record is calculated and the
problem that would be generated between classic and extended DBF is
considered too critical and, therefore, it is preferred to sacrifice this byte of
storage.

2.8 The file does NOT contain the end-of-file mark (0x1A) that can often be found in
classic DBF. The file will contain the extended field names between the field
definition end mark (Header Record Terminator - 0x0D) and the first record.
Access to these fields will be based on an offset and a size (the extended names
will not contain the final '\0') stored in the header of the fields (the offset in the
reserved2+7, of 4-byte length, and the size, in the reserved2+11 of 1-byte length.
The maximum length of an extended name of a field would therefore be 255
characters, but as discussed later, it ends up being 128 characters, enough
compared to what other large database managers support (Oracle 9.i supports
30, and SQL Server 2000, 128).

2.9 The user will be warned with a message if a DBF goes from not containing
extended names to containing them:
"The field name you want to create (%s) has characteristics not supported by the
classic definition of DBF files (such as accents, spaces, length greater than 10,
etc). Remember that you can also generate free-form names from the
"Descriptor" box or from the Metadata Manager (GeM+).
Do you want to use the name anyway? [Yes/No]"

C fields with extended lengths allow putting particularly long and complex text
content into the fields, such as HTML encoding, xpath() expressions for accessing
open data resources, etc. In the following example taken from a hypothetical

database where the birthplace of several writers is specified, the query allows
accessing to their biography (much longer, about 100 000 characters, than what
appears in the screen shot, as it can be deduced by the size of the vertical scroll bar
button), in this case taken from the Catalan Encyclopedia on Internet. Naturally,
adding a link to a photo, links to other resources on the Internet or to an intranet,
etc, can also be possible.

In the example shown, the field starts:
<HTML>

<i>[l'Aranyó, Segarra, 1 d'abril de 1918 - Barcelona, 26

de juny de 1990]</i>

Escriptor....

and ends:
...difusió de la seva obra, així com a la del seu ideari.</HTML>

3. Specification of the “Extended DBF” format.

The first byte is 0x90. This is the extended DBF mark. Further improvements could
involve successive hexadecimal numbering.

The 2 bytes called reserved_1 (bytes 12-13, numbered from 0) will be read together
with 10 and 11 as a single 4-byte package (unsigned __int32) which will define the
number of bytes per record. The extension to a 32-bit integer is necessary to be
able to fit, for example, several C fields with a large width.

The 4 bytes located in bytes 16-19 will be read together with those located at bytes
04-07 as a single 8-byte package (unsigned __int64) that will define the number of
records. The extension to a 64-bit integer is necessary to be able to fit, for example,
the point attributes of high-density lidar files over very large countries.

The 2 bytes 30-31 will be read together with 8 and 9 as a single 4-byte package that
will define where to start storing the records. Unlike in classic DBF, where the
number of fields in the table determines where the DBF header ends, this is no
longer the case since it is necessary to anticipate that there will still be, after the end
mark of the classic header (Header Record Terminator, 0x0D), the extended names.
The number of fields now supported by the extended DBF is conditioned by the 32
bytes intended to describe each field and this offset where the records begin, within
which it is necessary to include, in addition to the description of each field, the header
of 32 bytes, the final byte 0x0D marking the end of field descriptions and extended
names. So, for now, it remains: (2147483648-32-1)/(32+128)= 13 421 772, or about
13.4 million fields.

In special fields in the extended DBF (the C ones in the current version, 0x90), the
number of bytes per field is not defined in byte 16, but in bytes 21-24 (unsigned
__int32) of each 32-byte package that defines each of the fields. The 16th byte
remains, in these cases, with value 0.

The extended names in the new DBF tables allow a length of 128 characters and
practically any character (note that in other large database managers the field name
width is equal to or less than the proposed in the extended DBF and therefore
maximum compatibility is achieved). The only characters that are not allowed are
the open accent alone (without accenting any letter), square brackets, diaeresis, and
non-printable characters (such as carriage return or DEL), thus making DBF
compatible with field names allowed in the Oracle, MySQL or SQL Server
databases. The access to the extended field names is done through bytes 25, 26,
27, 28 and 29 of the header of the field. More specifically, bytes 7, 8, 9 and 10 define
the offset where to look for the field extended name. Byte 11 refers to the size of the
name, which will be, as said before, a maximum of 128 characters. Allowing more
characters (up to 255) does not seem necessary when neither SQL Server nor
Oracle exceed this value and would decrease the total number of possible fields in
the table. The character set (ANSI, OEM, UTF-8) with which an extended name is

written is the one consistent with that defined in byte 29 of the table header (the
same with which C fields are written). Note for the classic DBF case: Although
special characters (accented letters, etc) in field names do not conform to the classic
DBF standard, ArcGIS and QGIS create and tolerate accented field names in classic
DBF. The philosophy at MiraMon is, in a classic DBF, not to generate accented
letters, etc, in the names of the fields, as it is too far from the standard, but in case
there are these extended characters, to tolerate them and display them according to
the character code of byte 29 of the header.

For additional information, please consult MiraMon databases.

https://www.miramon.cat/help/eng/mm32/ap9.htm

